Refine Your Search

Topic

Search Results

Standard

Film Analysis Guides for Dynamic Studies of Test Subjects

2019-10-02
CURRENT
J138_201910
This SAE Recommended Practice is intended to provide guidelines for the identification of subjects used in dynamic tests. It establishes recommendations for location and description of target areas on test subjects or test devices, as well as recommendations for photographic calibration and timing.
Standard

Filter and Filter Element for Hydraulic System(s) Used on Manufacturing and Assembly Equipment

2019-10-02
CURRENT
J2066_201910
This SAE Standard establishes a common specification and ordering code for hydraulic filter assemblies and hydraulic filter elements, and establishes minimum performance criteria and test methods. This document establishes two filter diameter sizes, five basic micron ratings, and two basic collapse ratings. These classifications will satisfy most hydraulic filter applications, and thereby can minimize inventory requirements for hydraulic filter elements.
Standard

Motor Vehicle Seating Systems

2019-10-02
CURRENT
J879B_201910
This SAE Recommended Practice establishes uniform test procedures and certain minimum performance requirements for motor vehicle seats and seat adjusters. It is limited to tests that can be conducted on uniform test fixtures and equipment available in commercial laboratory test facilities. This practice includes a minimum requirement for horizontal forward loads encountered in vehicle forward impacts, and horizontal loads obtained by impacting the vehicle from the rear. The requirements and test procedures in this recommended practice reflect current technology and industry experience. It is intended to subject this recommended practice to a continuing review and revision as technology advances and experience is expanded.
Standard

Recommended Practice for Optimizing Automobile Damageability and Repairability

2016-02-03
HISTORICAL
J1555_201602
This SAE Recommended Practice applies to all portions of the vehicle, but design efforts should focus on components and systems with the highest contribution to the overall average repair cost (see 3.7). The costs to be minimized include not only insurance premiums, but also out-of-pocket costs incurred by the owner. Damageability, repairability, serviceability and diagnostics are inter-related. Some repairability, serviceability and diagnostics operations may be required for collision or comprehensive loss-related causes only. Some operations may be for non-collision-related causes only (warranty, scheduled maintenance, non-scheduled maintenance, etc.). Some may be required for both causes. The scope of this document deals with only those operations that involve collision and comprehensive insurance loss repairs.
Standard

Motor Vehicle Seat Belt Anchorages - Design Recommendations

2014-10-28
HISTORICAL
J383_201410
This SAE Recommended Practice specifies design recommendations for the location of seat belt assembly anchorages which will promote proper transfer of occupant restraint forces on the strongest parts of the human anatomy to the vehicle or seat structure. Test procedures are specified in SAE J384.
Standard

Uniform Reference and Dimensional Guidelines for Collision Repair

2014-06-26
HISTORICAL
J1828_201406
This SAE Recommended Practice defines, for vehicle manufacturers and collision information and equipment providers, the types of vehicle dimensional data needed by the collision repair industry and aftermarket equipment modifiers to properly perform high-quality repairs to damaged vehicles. Both bodyframe and unitized vehicles, including passenger cars and light trucks, are addressed.
Standard

Seat Belt Hardware Webbing Abrasion Test Procedure

2013-06-11
CURRENT
J339_201306
This SAE Recommended Practice describes a test procedure for evaluating the abrasion resistance characteristics of webbing when used in hardware of seat belt assemblies such as those described in SAE J140.
Standard

Seat Belt Hardware Webbing Abrasion Performance Requirements

2013-06-11
CURRENT
J114_201306
This SAE Recommended Practice describes the performance requirements for abrasion resistance of webbing when used in adjustment hardware normally used to adjust the length of seat belt assemblies such as those described in SAE J140. These requirements are applicable to tests conducted according to the procedure described in SAE J339. Although adjustment hardware is normally the primary source of webbing abrasion in a seat belt assembly, consideration should be given to other areas of normal webbing contact in the restraint system that may provide a more severe condition of webbing abrasion.
Standard

Seat Belt Hardware Performance Requirements

2013-02-13
HISTORICAL
J141_201302
This SAE Recommended Practice describes performance requirements for hardware used in motor vehicle seat belt assemblies when tested in accordance with the test procedures specified in SAE J140. Test procedures and performance requirements for retractors will be covered in separate SAE Recommended Practices to be issued later.
Standard

Seat Belt Hardware Test Procedures

2013-02-13
HISTORICAL
J140_201302
This SAE Recommended Practice describes test procedures for evaluating hardware used in motor vehicle seat belt assemblies. Related hardware performance requirements are described in SAE J141. Test procedures and performance requirements for retractors will be covered in separate SAE Recommended Practices to be issued later.
Standard

Seat Belt Restraint System Hardware - Glossary of Terms

2013-01-08
HISTORICAL
J1803_201301
This SAE Recommended Practice provides a Glossary of Terms commonly used to describe Seat Belt Restraint Systems Hardware and their function. These terms are currently defined in various SAE Recommended Practices but are sometimes inconsistent. It is intended for this document to supersede the definitions found in separate SAE Recommended Practices.
Standard

OEM Plastic Parts Repair

2011-12-20
HISTORICAL
J1573_201112
This SAE Recommended Practice defines the information required to repair the various types of plastics found on modern light-duty highway vehicles. Information is included for the repair and refinishing of most plastic body parts, both interior and exterior. Repair information is described for all commonly used plastics including, but not limited to, polyurethanes, polycarbonate blends, modified polypropylenes, polyethylenes and nylons. Repairs can be made to these types of plastics using two-part (2K) repair adhesives, plastic welding, and other materials available from body shop suppliers. When a new type of plastic is being introduced to the market through a new vehicle program, specific repair and refinishing procedures should be provided, following the format in this document. Sheet-molded compounds (SMC), fiber-reinforced plastics (FRP) and carbon fiber reinforced plastics can also be repaired using slightly different procedures and repair materials.
Standard

New-Vehicle Collision Repair Information

2011-05-16
HISTORICAL
J2376_201105
This SAE Recommended Practice defines the various types of information required by the collision repair industry to properly restore light-duty, highway vehicles to their pre-accident condition. Procedures and specifications are defined for damage-related repairs to body, mechanical, electrical, steering, suspension, and safety systems. The distribution method and publication timeliness are also considered.
Standard

Heavy-Duty Starter Remanufacturing Procedures

2008-11-26
CURRENT
J2237_200811
These remanufacturing procedures are recommended minimum guidelines (with the understanding that more stringent procedures are acceptable) for use by remanufacturers of heavy-duty starters to promote consistent reliability, durability, and safety of remanufactured starters. Installation of remanufactured or rebuilt products is often an economical way to repair an application even though the products may not be identical to original equipment parts. Before processing any part, a remanufacturer should determine if the original design and present condition of the core are suitable for remanufacturing so as to provide durable operation of the part as well as acceptable performance when installed on the application. The remanufacturer should also consider the safety aspects of the product and any recommendations of the original manufacturers related to remanufacturing or rebuilding their product.
Standard

Starter Armature Remanufacturing Procedures

2008-11-26
CURRENT
J2240_200811
These remanufacturing procedures are recommended guidelines for use by remanufacturers of starter armatures to promote consistent reliability, durability, and safety of remanufactured starters. Installation of remanufactured or rebuilt products is often an economical way to repair a vehicle even though the products may not be identical to original equipment parts. Before processing any part, a remanufacturer should determine if the original design and present condition of the core is suitable for remanufacturing so as to provide durable operation of the part as well as acceptable performance when installed on the vehicle. The remanufacturer should also consider the safety aspects of the product and any recommendations of the original manufacturers related to remanufacturing or rebuilding their product.
Standard

Automotive Starter Remanufacturing Procedures

2008-06-09
CURRENT
J2073_200806
These manufacturing procedures are recommended minimum guidelines for use by remanufacturers of light-duty automotive starters to promote consistent reliability, durability, and safety of remanufactured starters. Installation of remanufactured or rebuilt products is often an economical way to repair a vehicle even though the products may not be identical to original equipment parts. Before processing any part, a remanufacturer should determine if the original design and present condition of the core are suitable for remanufacturing so as to provide durable operation of the part as well as acceptable performance when installed on the vehicle. The remanufacturer should also consider the safety aspects of the product and any recommendations of the original manufacturers related to remanufacturing or rebuilding their product.
Standard

Alternator Remanufacturing/Rebuilding Procedures Includes Passenger Car, Heavy Duty, Industrial, Agricultural, and Marine

2008-05-13
CURRENT
J2075_200805
These remanufacturing procedures are recommended minimum guidelines (with theunderstanding that being more critical is acceptable) for use by remanufacturers/rebuilders of alternators to promote consistent reliability, durability, and safety of remanufactured alternators. Installation of remanufactured or rebuilt products is often an economical way to repair an application even though the products may not be identical to original equipment parts. Before processing any part, a remanufacturer/rebuilder should determine if the original design and present condition of the core are suitable for remanufacturing/rebuilding so as to provide durable operation of the part as well as acceptable performance when installed on the application. The remanufacturer/rebuilder should also consider the safety aspects of the product and any recommendations of the original manufacturers related to remanufacturing or rebuilding this product.
X